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O Introduction: what is Open Biology?

Google says Open Biology is an online journal that welcomes original, high impact
research in cell and developmental biology, molecular and structural biologys, ...

This is good, however, this is not exactly what we are looking for!

Open ACCCESS is a broad international movement that seeks to grant free and open online
access to academic information, such as books, publications and data.

Making biological knowledge freely accessible for everyone
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O Introduction: what is Open Biology?

Making biological knowledge freely accessible for every surfer

Is this mission is achieved?

We can say YES, but not completely
Over 30% of all scholarly articles are actually published as
paid-for open access

82% of the peer-reviewed articles from 2021 of the 14 Dutch universities are Open Accessed
available with a strong increase of 9% compared to 2020.

This is good, however, is open biology accessible for students?
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O Introduction: what is Open Biology?

Is open biology accessible for IBOs students?

Under-graduated students, our future IBOs,

Scholar platform to access to open biology
Enough information on how and where find open biology

Very limited sources in the less developing countries
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O Introduction: 1s open biology really needed for young biologists?

Yes, definitely

Because open biology offers:

A large and varied collection of academic sources in biology: books, scientific

publications, protocols and even more experimental videos,..
New trends in biology: emergent pollutants, global warming, new tolls in bioinformatics,..

New techniques in biology: analytical and imaging
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0 Academic publishers of Open Biology

Where and how students can find scientific publications in biology?

This is the first question we try to answer and discus in the welcome lecture
with our news National Biology Olympians



0 Academic publishers of Open Biology

Where and how students can find scientific publications in biology?

There are lots of scientific publications in different branches of biology
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Where we find open-accessed scientific publications?
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0 Academic publishers of Open Biology
Where and how students can find scientific publications in biology?

Top 10 academic publishers 2023:

Science group,
Springer Nature group,

Elsevier,
Cell Press,
Oxford Academic,

Wiley-Blackwell,

Taylor & Francis
BMC group

Frontiers group
PLOS group

Published more than a half of peer-reviewed academic papers



0 Academic publishers of Open Biology
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Where and how students can find scientific publications in biology?

www.elsevier.com

Life Sciences > Biological Sciences journals
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0 Academic publishers of Open Biology
Where and how students can find scientific publications in biology?

Top academic publishers with Open Access policy:

Nature, few journals

BMC group Academic publishers
Frontiers group + subscription
PLOS group

Open access journals

Free full papers
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0 Academic publishers of Open Biology

Where and how students can find scientific publications in biology?

Life Sciences > Biological Sciences journals > Open Access Journals

About PLOS
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0 Academic publishers of Open Biology

Where and how students can find scientific publications in biology?

Life Sciences > Biological Sciences journals > Open Access Journals

BROWSE PUBLISH ABOUT

PLOS BIOLOGY

June 20, 2023

A new human embryonic cell 3/ e]=

The inner cell mass, from which the human fetus is derived, has proven hard to define. Laurence
Hurst and colleagues perform single-cell analysis and embryo visualization and identify a
common novel class of non-committed cells that undergo apoptosis and may reflect a quality
control screening process.

Image credi: pbio.3002162

Y

13



IBO_UAE_23_Educational Conference

O Structure of a typical scientific paper in biological sciences

Guidelines on how students can be familiar with scientific paper

A scientific paper provides information on:
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Minimal gene set discovery in single-cell
mRNA-seq datasets with ActiveSVM

Xiaogiao Chen’, Sisi Chen** and Matt Thomson (12252
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In biological sciences, a scientific
paper is typically composed of:

Title
Abstract

Introduction
Materials & methods

Results
Discussion

Conclusions
Acknowledgment
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O Structure of a typical scientific paper in biological sciences
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Minimal gene set discovery in single-cell
mRNA-seq datasets with ActiveSVM

Xiaoqgiao Chen’, Sisi Chen** and Matt Thomson (13252
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transcriptome-scale profiing of thoasands of cells per expen.

mental run, Althoegh single ool mll.\'.\-xeq approaches
prrmda: m:y‘u tmio many dfferent bokogial and bomedical
probl sequencing costs probebit the broad application of
smgk (‘rll milNA-seq tn many urjcnwry asays such as small
molecule and genetsc screens, and in cost-sensittve cimical 2says.
The sequencing bottlenack has led Lo the development of tarpeted
mRNA-seq strategtes that reduce sequencing costs by up to 90%
by focudng sequencing resources on hghly mformative genes for
a given biological question or an analysts . Commercial groe.
targeting ks, for example, reduce sequencing costs through selec.
tve amplsfication of specefic tramscripts ustng 1,000 gene-Langeting
primen.

Cells modulate gene expresson through the regulatxn of
transcriptional programs or modudes that contatn multsple groes
regulated by commen sets of transcription factors'. Cenes withn
transcripticsal modules exhibn correlaied pene expression due o
co-regulavn. Correlions 12 pene expresson can enable the tran-
scrptiosal state of a cell to be reconstructed through the taspeted
mRNA proftiing of a small number of highly tnformattve pemes™',
However, such tamgeted sequencing approaches require computa
tonal methods to sdenttfy highly miormative genes for spectfic bio.
quu] Questions, systems or u:m'.um A range of computational

hes, induding analysts and
prmcrul components analyss (PC v\) can be applied to sdentrfy
highly mformattve genes”. Yet, current methods for defintng mim
mal grne sets 2re computattonally expenstve 1o apply 1o larpe single
cell mRNA-seq datasets and oflen require heursstic user-defined
thresholds for gene sdecticer”. As an exemple, computaticnal
spproaches based on matnx Bctorzatcn (PCA, non-negttve
matrix factortzation) are typically apphed to compicte datascts and
therefore are cox atsoeally intenstve when datasets scale into
the millions of celly'. Furthermore, gene set selection after mazrix
factortzation requires hearistic strategnes for thresholding coel-
ficients tn gene vectors extracted by PCA or non-negattve matrix

S:g‘lc cell mRNA-seq methods have scaled to allow routine

factortzation, and then querying whether the selected genes retam
core beclogical miormation.

Inspared by active learming' proaches, here we develop a com-
putational method that selects minimal gene sets capable of relably
wdentifying cell types and transcriptional states thn an axtive
support vector machine dasthication task (ActveSVM)==. The
ActreeSVM algonihm constructs 2 mintmal gene set through an
terattve cdl-state dassification task. At each tteration, ActveSVM
applies the current gene st to classify cells tmio dases that are
provided by unapervised clusiertng of cell states, or by sipplied
experimental labds. The procedure amalyzes cells that are ms
classtfied with the current gene set and then identifies maximally
micrmative peees that are added 1o the growing gene sel 1o mmprove
classtfication. Traditsonal active learning algoetthms quey an ceacle
for traming examples that medt a criteria, The ActiveSYM proce.
dure actively quertes the output of an SVM classifier for cells that
classify poorly, and then paf..rms a detadled amalysts of the mis.
classtiie \5‘ cells to select maximally mformative penes. By sclecting
mintmal peoe sets throwh a well-defined dasefication task, we
ensure that the pene sets discovered by ActiveSVM reatn biological
micrmation.

The central contribution of ActiveSVM 15 that the method can
scale to larpe single-cell datasets with more than one mifhon cells 25
the procedure focuses computational respurces on poorly dastfied
cells, As the algorithm only analyzes the &l transeriplome of cdls
that cdasaly pocely with the current gene set, the method can be
applied to discover small sets of grmes that can distinguish betwoen
ceil types at high accuracy even n datasets with over a million pro.
filed calls. We demonatrale that ActiveSVM can 2malyze 3 mouse
bram dataset with 1.3 million celis tn cnly hours of computational
ttme. In addition 10 scaling, the ActiveSYM classification paradigm
generalizes 10 2 range of single-cdl data analysts tasks, induding
the denttfication of disease markers, penes that respond to Cas
perturbation and regon-specfic genes in spatial transcriptomics.

To demonstrate the performance of ActiveSVM, we 2pply the
method to a sertes of singlecell genomics datasets and amalyss

Deparmaont of Computing 2nd Mathamaticyl Soiencas, Caiomis rstitiee of Tactnology. Parddona, Calfomia, LSA. Diviion of Bciogy and Biological
Enpiroaring Caltzents institute of Technology, Pasadany Calfornia USA "Bockman hsifute Sngse-cdl Proding and Enginaceing Canter, Pasadony

Caromiy USA, g mall: mihomsongscallach edu
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O Guidelines for reading of a scientific paper

A scientific paper is typically composed of:

Introduction: Deep scientific background in a specific topic
Materials & methods: 01d & new technics

Results: Figures > statements

Discussion: Critical opinion

Acknowledgment: Say thank you
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ome-scale proffiing of thoasands of cells per expen.
mental run, Although single ooll zl‘l.\',\»x-cq approaches
pmmk- mn“n o many &ffereat biologial and bomedical
sequencing costs probibt the broad application of
nngk uil mitNA-seq in many cxploratory asays such as small
melecule and genetic screens, and In cost-sensittve cinical 2eays.
The sequencing bottlenack has led Lo the development of taspeted
mRNA-seq drategtes that reduce sequencing costs by up to 90%
by focusng sequencing resources on hyghly mformative genes for
a gven biologxcal question or an analyss . Commercial groe
targeting ks, for example, reduce sequencing costs threugh selec.
tve ampleficatson of spectfic tramscripts using -1 000 gene-Largeting
primen.

Cells modulate gene expresson through the regulaxe of
transcriptional programs or modules that contatn multiple groes
regulated by common sets of tr on factory'. Cemes within
transcripticnal modules exhibn correlaied pene expression due to
co-regulatyon. Correltons 1n pene expresson can enable the tran-
scriptional state of 2 cell to be reconstructed through the taspeted
mRNA profiling of 3 small mumber of highly tnformattve proes™,
However, such targeted sequencing approaches require computa.
ttomal methods to idenitfy highly informative genes for spectfic blo-
Togical questions, systems or condttons. A range of computational

vaches, induding @ffeseattd me ession analysts and
;ﬂ:“v@ ll:ﬁp:f<$ amalyss (PC "I: applied w\’kaxf-
highly tformatve genes”. Yet, tu.'rrl methods for defining mim
mal gene sets are computationally expenstve 1o apply 1o larpe smgle

S:zgiccdl mRNA-seq methods have scaled to allow routine
tr:

factortzation, and then querying whether the selected genes retan
core beclogical miormation.

Inspired by acttve kearming' proaches, here we develop a com-
;-.x:mcvml method that selects minimal gene sets capable of relably
dentifying cell types and transcriptional states throgph an active
mpport vector machine dastfication task (ActveSVM)==. The
ActreSVM algonthm constructs 2 mintmal gene set throagh an
terative cdl-state dassification task. At each tteration, ActveSVM
applies the current gene st to classfy cells tnto dases that e
provided by unapervised clustertng of cell states, or by spplied
experimental labds. The procedure analyzes cells that are mis.
classtfied with the current gene set and then 1denttfies maximally
micemative pemes that are added to the growing gene sel o mmprove
classtfication. Tradtsonal active learning algorithms query an ceacle
for traming examples that med 3 criterta, The ActiveSVM proce.
dure actively quertes the output of an SVM classifter for cells that
classify poorly, and then pcrf:.rms a detatled analysts of the mis.
dmll’ug cells to select maximally mformative penes. By selecting
mintmal peee sets throwh a well-defined dassfication task, we
ensure that the pene sets discovered by ActtveSVM retatn biological
mfcrmation.

The central contribution of ActiveSVM s that the method can
scale to larpe single. cell datasets with more than one miflion cells 25
the peocedure focuses computational resources on poorly dastfied
caells, As the dgorithm only analyzes the full transcrplome of cdls
tha cassify pocely with the current gene set, the method can be
apphied to discover smal sets of grmes that can distinguash betwoen
ceil types at high acouracy even tn datasets with over a mallion pro.

cell mRNA-seq datasets and often require heunistic user-defined
thresholds for gene sdecticer”. As an example, computaticnal
sppeoaches based cn matnx fctorzaticn (PCA, non-negative
matrix factortzation) are typically appled to complete datasets and
therefore are co atioeally intensive when datascts scale into
the millsons of celly. fw gene set selection afler matrix
factortzation requires heurtstic strategnes for thresholding coel-
ficients tn gene vectons extracted by FCA cr non-negattve matrix

filed clls. We d that ActiveSVM can amalyze 3 mouse
bram dataset with 1.3 million cells in caly hours of ccemputational
ttme. In addition 10 scaling, the ActveSYM classticaticn paradigm
generalizes 10 a range of single-cell data analysts tasks, induding
the identification of disease markers, penes that respond to Casy
perturbation and region-specific genes in spatal transciptomics.
To demonstrate the performance of ActtveSVM, we 2pply the
method o 3 sertes of stnglecell genomis datasets and amalyss

Deparmant of Computing and Mathamaticyl Sciencas, Caiornis Institiee of Tactnoiogy. Pacdona, Calfomia, USA. Division of Bickogy and Bioicgical
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O Guidelines for reading of a scientific paper
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mRNA-seq datasets with ActiveSVM

Xiaogiao Chen, Sisi Chen** and Matt Thomson (12252
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The sequencing bottlensck has led 1o the developmest of tampeted
MANA-seq srategies thal redsce sequencing costs by up to S0%
by focusng sequemang resources on hghly mlarmative penes for
2 gven bological question or an analysss *. Commercial grme.
targeting ks, for example, redce sequencing costs through selec.
tve amplefication of specefic tramscripts ustng 1,000 gene-Largeting
primen.

Cells modulite gene expressin through the regulitxn of
transcriptional programs or modules that contatm multzple grmes
regulated by common sets of transcription factors’. Genes withn
transcripticnal modules exhibi correlzied pene expression due to
e-regulatyon. Correlaions 12 pene expresson can ensble the tran-
serptieal sate of 3 el o be mconsiructed through the tapeted
mRNA profiing of a small rumber of highly tnformative prres .
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Inspired by acve lu:nmg proadhes, here we develop 3 com-
putational mechod that seects mintmalgene st capable o redably
\iu\hfﬂng cell types and transcrpeional states throaph an active
vector machine dasthcatn ml (ActveSVM)==. The
NSVl algenthm constructs 2 mintmal gene set through an
neratrve cdl-state dassification task. At each teration, ActveSVM
applics the current gene s o classify cels tmo clases that are
provided by unaspervised clusiering of cell stes, or by sigphed
expertmental labds. The procedure amalyzes cells that are ms
classtfied with the current gene set and then identifies maximally
Uhat are aded 1o the growing gene se 40 Improve

for tratming exsmples that mect a crleria®. The ActiveSVM proce.
dure actively quertes the output of an SVM classtfier for cells that
classify poorly, and then performs a detatled analysts of the mss.
dmlfng cells to select maximally miormative penes. By sclecting
minimal peee sets throggh a well-defined dasfication task, we
ensure that the gene sets discovered by ActieSVM retatn biologseal
miormation.

The cestral contribution of ActiveSVM s that the method can
st larye sl el dataets wih e han ome il el s

sppeoaches, induding @ffcreattd pene expresscn analysts and
principal compeeents analyes (FCA), can be applied to sdentiy
ghly mformive enes. m cutest m.mh for Mm-g mem

larpe sng
cell mRNA-seq datasets m lla: n requre heric et defined
thresholds for gene sdecticer”. As an exemple, computaticnal
spproaches bl o manx hwrm_m (PCA. non.-negative
matrix factortzation) are typically apphed 1o compicte dasets and
therefcre are computaticeally intensve when datascts scale tnto
the milsons of celly’. Furthermore, gene set selection afier matrix
fxtortzation requires beurtstic strategtes for thresholding coel-
Bcients th pene vextons extracied by PCA o non-negattee matrtx

] resoutces on poorly dastied
cadls, As the dgoritha onl nulvm the full transcriplome ol:dh
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cell types at high accuracy even tn datasets with over a million pro.
filed cls. We demonstrate that ActiveSVM can amalyze 2 mouse
Bram dataset with 1.3 million ces in caly hours of coemputational
1tme. I addation to scaling, the AciiveSYM classtication paradigm
generalizes 10 a range of single call data analysss tasks, induding
the tdentification of disease markers, genes that respond 1o Cas
perturbation and reglon-specfic genes in spatal transcrplomics
To demonstrate the performance of ActiveSVM, we apply the
method 1o 3 sertes of singlecell genomis datasts and analyes
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Engiroaring, Cattcenia mstiuta of Tochnoigy, Passdeny Calfora USA Backman Rsifita Snghs-cal Prosing ard Engmaseing Cants, Pasadany

Caifomia USA. o mal: mihorreangscalisch odu

NATLISE COMPUTATIONAL SOENCE | VEL 3| JNE 2072 | 7. 390w adtrn o bt P,

From each result segment

Hypothesis/Question

Result/Statement

Conclusion

Make a presentation!
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transcriptome scale profing of thoasinds of cels per expen:
mental run. Although single cell mANA-seq approaches
prm u mw"n o many @ffereet biokgial and bemedica
sequencing costs probibt the broad applcatson of
«m g it 5eq tn many cxploratory asays such as small
molecule and genetic scrrens, 2nd In cost sensitive cimical 2says.
The squencing botllensck has led 1o the developmest of tarpeled
mRNAseq strategtes thal rediuce sequenctng costs by up 1o %%
by focusng sequening rsourcs on b atrve penes for
2 gven bological qusstion or an analysy . Commercul grne
tangeting ks, for example, neduce sequencing costs through selec
ve amgplification of spectic tramscrpts using 1000 gene-Largeting
primen.

Cells modulite gene expressn through the regulitin of
transcriptioral programs or modules that contatn multple prnes
regulated by commo sets of transcrtption factors'. Genes within
transcripticral modules exhibit cornelzied pene expression due o
co-regulayn. Correlaions 15 peoe expresso
scrpticeal state of 3 cel b be reconstructed
mRNA profiing of a small rumber of highly nformative prnes™”
However, such targeind seuencing Zpproaches foguire computa-
tioeal methods to idemify highly misemative genes for spectfc bio
Togical Quesions, spstems or condittons. A rasge of

Sz,jc cell mRNA-s0q methods have scaled 10 allow routine

factonzation, and then querytng whether the selected genes retam
core becloy miormation.

Inspired by active learming® proaches, here we devekop 3 com-
ptatsonal meshod that selects minimal gene ses capsble of redably
*demiafymg cell types and transcrieional states through 2n active
igport vector machine dassication task (ActveSVM)=+. The
ActiveSVM algontthm constructs 2 mintmal gene set through an
nerative call-state lassification tsk. At each teration, ActveSVM
applies the current gene st to classify cells mo clases that are
provided by unapervised clustertng of cell tes, or by sgplhied
expertmental labes. The procedure analyzes cells that an mis.
clasified with the current geme st and then idenifes maximaly

Uhat e aciesd o he growteg gene set 10 tmprove
1 Tradsonal active Guery an cexcle
for traming examples tha mect 3 cfleria”, The ActveSVM proce.
dure actively quertes the output of an SVM classifier for cells that
classtfy poory, and then periorms a detadled analysts of the mis.
clasatfies \§ cells 1o select ?.ulm.\.y miormative penes. By selecting
mintmal peee sets through 3 well-defined dasefication task, we
ensure tha the gene sets discovered by ActiveSVM retata biological
micemation.

The central contribution of ActiveSVM 1 that the method can

scieto larye gl cell daets with me tan one miion el as

sppeoaches, induding @ffcreattd pene expresscn analysts and
princpal comperents amalys (PCA), can be applicd to sdentily
ighly nformaive s’ Yl curveet methods b defirizg mira
onally vy 1o larpe singie.
el mRNA-seq dataacts 3nd oflen require heursaic weer-defined
thresholds for gene sdecticer”. As an exemple, computaticnsl
approaches bued ca manix fctorzatcn (PCA. non-negative
matrtx factortzatson) are typically sppied 1o complete daascts nd
therefore are computaticeally intensive when datasets scale tnto
the mlions of celly, Furthermare, gene st selection afler matrix
factertzation requires heuristic stratsgtes for thresholding coel.
Bieicets tn gene vectos extracted by FCA ¢ non-negative matrix

I resources on poorly dastfied
“m il drm\h‘n only andlytes the full ranscriptome of cdls
thit classify pocely with the current gene sel, the method can be
applicd to discover smallscts of groes that can dstinguash betwoen
calltypes at hgh accuracy eve n datasets with over a milion pro
fld i e damorrae ha AieSVM can e 3 mouse
ram dataset with 1.3 million cals in caly hours of coemputational
nme n additson o calng, the ActveSVM clastfcatcn paradigm
gemeralizes 10 2 range of single.cell data analyss tasks, induding
the Kextfication of dmeme markers, genes that respond to Cass
‘perturbation and region.- spectfic penes in spatul transcripiomics
To demonstrale the performance of ACeSVM, we 2pply the
method 1o 3 sertes of single-cell genomics datawts and analyss
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O Guidelines for reading of a scientific paper

Skills acquired:
To gain information on the construct of a scientific paper
To be familiar with an advanced scientific language
To gain more an elaborated scientific background
To be familiar with different forms of illustrations
To prepare a presentation

And more importantly, to talk and discuss with others
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¥ exploratory asays sach as small
molecule and genetsc screens, and in cost-sensittve chmical asays.
The sequencing bottlensck has led 1o the development of tarpeted
mRNAseq strategtes thal rediuce sequenctng costs by up 10 9%
by locusng sequenaing rsourcs on highly mlormative pencs for
2 gven Balogical question or an analysss . Commencul gene
tangeting ks, for example, neduce sequencing costs through selec
tive ampltfication of spectic rasscripts using -1 000 gene-Largeting
primen.

Cells modulite gene expressn through the regulitin of
eal programs or modules that contatn muliple penss

stnge.cdl

co-regulayn. Correlations 12 pene expresson can enable the tran-
scrpticeal state of 3 cell o be feconstrucied ¢ the tarpeted
mRNA profiiing of a small rumber of highly informattve prees™

Howews, such i sequencing Zpproaches T computa
nal methods to idenitfy highly iniormative genes for spectfic blo
Togical questions, spstems of conditions. A rasge of computational
spproaches, iduding @ffcr sk analysts and
princial compeeents anilyds e applicd to wensly
highly taformative gencs'. Yet, current methods for defining mimi

g 2 computationall

cell mRNA.seq dstasets 3nd often requre hearsstic wer-defined
thresholds for gene sdecticer”. As an computaticasl
spproaches based cn manx Extonzatin pon-nogtive
mairtx factorteation) are typically apped lo compicte daascts and
therefore are atweally tnienstve when datascts scale into
the millions of celly’. Furthermore, gene set selection afler matrtx
factertzation requires heuristic stratsgtes for thresholding coel.
fictents 1n ene wetoes eatracied by PCA o non-negattee matrtx

S Introduction

™ lnpard by acive kearmng spproncies, ere we dves pacom-
ptatsonal mechod that selects minimal geme sets capsble of redably
1Ce

Wentifymg cell types and jonal states throph 28 active Y
=ipport vector VM)~ The
ActiveSVM algorthm constructs 2 mimtmal gene set throagh an
ferattve cdl-stae dasstfication task. At each teration, ActveSVM

applics the current gene st Lo classify cels tmio clases that e

provided by unapervised clustertng of cell ates, of by sgplied [ ] [ )
experimental labeis. The procedure amalyzes cells that ame mis.
classified with the curnent geme st and then \denbfies maximally l 1
nformaitve peres (hal a7 e o e g gen sl o mmprove
! Tradwona y an cexcle

g cxamples that meet a crleria”. The ActveSVM proce. esu S

dure actively queries the output of an SVM classifier for cels that
classify poory, and then performs a detated analyts of the mis

()
classifed cell 1o select maximally mformative genes. By selectng
minimal peee sets through 3 well-defined dassficaton task, we [ ] o
e th hegene sk dicoverd by ActveSVM i bologrcal [ ]
iscussion
" fhe cemral contrbution of ActweSVM i that the method can

scale 1o larpe stngle. cel catasets with more than one ml
the peocedure focuses computational resources on poorly dastfied
cels, As the algorshm only analyres the full tranwplome of cdls
thit classify pocely with the current gene sel, the method can be

o
applicd 1o étscoves smallscts o gemes that cam distingash betwoen
calltypes at high accuracy even tn datasets with over a million pro.
fld i e damorrae ha AIeSVM can e 3 mouse

bram dataset with 1.3 million cals in caly hours of compatational
time. I additson 10 scaling, the ActiveSYM classtfication paradigm
generaltzes 0 a range of single.cel data asalysts tasks, inclucding

the identtfication of disease markers, genes that respond to Cass
‘perturbation 2nd regton.-specic penes in spatul transcriomics.
To demonstrale the performance of ACeSVM, we 2pply the

method 1o 3 sertes of single-cell genomics datawts and analyss
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The sequencing bottlensck has led 1o the development of tarpeted
mRNAseq strategtes thal rediuce sequenctng costs by up 1o %%
by locusng sequenaing rsourcs on hghly mlormative pencs for
2 gven Balogical question or an analysss . Commencul gene
tangeting ks, for example, neduce sequencing costs through selec
tive ampltfication of spectic rasscripts using -1 000 gene-Largeting
primen.

Clls modulte gene expresocn shrough the regulitin of

transcrtptiosal
regulated by ¢
transcripticeal e expression due to
eo-regulatyon. Cornelatons 1 pene expresson can ensble the tran-
scrpticeal state of 3 cell 1o be reconstrucied through the tarpeted
mRNA profiing of a small rumber of highly nformative prnes™”
However, such Gargeed seg
tioeal methods to idenify b
Togical questions, systems of conditions. A range of

S;—;ic cell mRNA.seq methods have scaled 1o allow routine
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Inspired by acmelean mg prosches here we develop a com-
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Wentifying cell types and transc s throaph 20 active
ey vcior tachine cuathcsson tsk (AeS VM)~ The
ActiveSVM algortthm constructs 2 minimal gene set throagh
fenative cdl. :wuf.uu' sk At each teration, ActiveSVM
apples the current gene st 1o lssly el o e tht e
Froviicd by wmpxivmed cleker sites, or by splied
expertmental labels. The procedure analyzes cells that ane mis
classtfied with the curnnt gene set and then tdentifies maximally
nfrmative eses that are added to the gron

for trasming examples tha meet a crtieria®. The ActveSVM proce.
dure actively quert output of an SVM classifier for cells that
classify poorly, an pert a detatled amalysts of the mas.
classtfted celli to select maumally miormative penes. By selectimg
minimal pene sets through a well-defined dasefication Lk, we
ensure that the gene sets discovered by ActieSVM retatn biologseal
micrmation.

The central contribution of ActiveSVM 15 that the m
scale 1o larpe single cell datasets with more than one mul!
the peocedure § cemputatyomal resources on poorly dastfied
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therefore are computaticeally intenstve when datascts scale into
the milisoms of celly'. Furthermore, gene set selection after matrix
factertzation requires heurtstic strategnes for threshokding coel
fictents 1n ene wetoes eatracied by PCA o non-negattee matrtx

calls, As the algorhm only analyzes the fal transcrpiome of cdls
that chassfy pocely with the current gene set, the method can be
applicd to discover smallscts of groes that can distimguash betwoen
el types at high accuracy even n datasets with over -2 million pro.
fled cie We demosarae hat AaneSVM can salne 3 mouse
bram dataset with 1.3 million cals in caly hours of compatational
tme. In addition 10 scaling, the ActiveS!
generaltzes 0 a range of singh :
the identtfication of disease markers, genes that respond to Cass
‘perturbation 2nd regton.-specic penes in spatul transcriiomics.
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To demonstrale the performance of ACeSVM, we 2pply the
method 1o 3 sertes of single-cell genomics datawts and analyss
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Writing a paper is usually proceeded in the following order:

Materials & methods: accurate, reproducible
Illustrations & tables: clear and understandable without text
Results: direct, concise and comparative

Introduction: well constructed, concise, elusive
Discussion: comparison, interpretation and explication
Conclusions: significance and applications

Abstract: a very compact version of the paper

Title: one statement covering the most important result
Acknowledgment
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tangeting ks, for example, reduce sequencing costs through selec.
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primen.

Cells modulite gene expressn through the regulitin of
transcriptioral programs or modules that contatn multple prnes
regulated by commo sets of transcrtption factors'. Genes within
transcriptional modules exhibit corneizied pene expression due to
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tioeal methods to idemify highly misemative genes for spectfc bio
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care beclogical miormation.
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pustational method that select nal geme sets capable of reably
*deniafymg cell types and meional stales throuph 2n active
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nerative call-state classification tsk. At each teration, ActveSVM
applies the current gene s to classify cells tnto clases that are
provided by unapervised clustertng of cell tes, or by sgplhied
expertmental labes. The procedure analyzes cells that ane mis.
clasified with the current geme st and then denifes maximaly
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To gain information on the writing process of scientific paper
To write a brief report

To write and design an IBO international project
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O A brief highlight on the writing of a scientific paper: order of process
Critical reading and reviewing process

An usual direction

Young minds write Old minds review

Amazingly, an unusual

. ] direction ] ]
Old minds write Young minds review

Frontiers for Young Minds believes that the best way to
make cutting-edge science discoveries available to

< frontlel‘s younger audiences is to enable young people and

scientists to work together to create articles that are both
accurate and exciting
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